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.I A Modern Control Theory Based Algorithm for Control of 
the NASA/JPL 70-Meter Antenna Axis Servos 

R.  E. Hill 
Ground Antennas and Facilities Engineering Section 

A digital computer-based state variable controller has been designed and applied to the 
70-m antenna axis servos. The general equations and structure of the algorithm and pro- 
visions for alternate position error feedback modes to accommodate intertarget slew, 
encoder referenced tracking, and precision tracking modes are described. Development o f  
the discrete time domain control model and computation of estimator and control gain 
parameters based on closed loop pole placement criteria are discussed. The new algorithm 
has been successfully implemented and tested in the 70-m antenna at Deep Space Station 
(DSS) 63 in Spain. 

1. Introduction 
Servo design studies utilizing dynamic models of the new 

70-m antenna structures identified many changes in control 
dynamics which result from the antenna upgrade from 64 m 
to 70 m [ l ]  . These studies indicated that the 64-m rate loop 
hardware and software required only minor parameter value 
modifications when upgraded to the 70-m system. The 70-m 
Antenna Servo Controller employs a software pointing control 
algorithm similar to that used in the previous 64-m antenna 
configuration. This article describes the new servo control 
algorithm and the analytic servo design methods employed in 
deriving the control coefficient values for the new 70-m 
antenna. 

II. Control Algorithm Description 
The position control loop is closed in the Antenna Servo 

Control (ASC) computer by a digital, state variable controller 

based on modern feedback control techniques. It employs 
feedback of the hardware system state variables to achieve the 
required closed loop system performance. A linear estimator, 
or observer, provides a measure of those states which are not 
instrumented. The state variable feedback controller differs 
from the classical feedback controller, which relied on the use 
of cascade networks (implemented in either hardware or soft- 
ware) to provide the necessary servo compensation. 

The state variable controller has several advantages: (1) its 
compensation techniques are not limited to the use of physi- 
cally realizable networks; (2) the state variable approach facili- 
tates discrete time domain design methods, resulting in effi- 
cient utilization of the control computer; (3) the state esti- 
mator provides an accurate, low-noise measure of rate and 
acceleration; (4) the estimator provides a powerful method of 
encoder data error detection and correction which permits 
uninterrupted operation during brief intervals when the en- 
coder data are unusable; and (5) the state variable method 
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employs a standardized matrix representation of the system 
which is convenient for digital computer processing. The 
closed loop state variable controller has the linear system prop- 
erties of a classical linear feedback controller, and its perfor- 
mance is related to bandwidth and linear error coefficients. 

The operation of the control algorithm is illustrated in the 
block diagram of Fig. 1 ,  which depicts a single axis of the two- 
axis Azimuth/Elevation system. The block labeled “Antenna 
Hardware” represents the control electronics, the rate loop, 
and the output gear ratio. Its output, X, is a vector whose ele- 
ments represent the individual system states. The hardware 
control input, U, corresponds to the rate command input to 
the hardware generated by the control algorithm. Antenna 
position is sensed by a bull gear referenced angle encoder and 
also by an optical autocollimator. These devices are repre- 
sented by two additional blocks, both having the input state 
vector X. The autocollimator detects antenna position error 
relative to a Precision Instrument Mount or Master Equator- 
ial (ME) which serves as a precision tracking position reference 
and is controlled in celestial hour angle and declination coordi- 
nates. The sensing axes of the autocollimator are precisely 
aligned with respect to the geometric axis of the antenna pri- 
mary reflector, thus providing more precise pointing than is 
available from axis mounted angle encoders. 

The representative equation of the “Antenna Hardware” 
block is the generalized difference equation relating the hard- 
ware state vector at the discrete times of the computer sam- 
pling to the state vector’s previous value and to the control 
input, U .  The discrete transition matrix, a, and the input vec- 
tor, I‘, describe the dynamic behavior of the physical system. 
The angle encoder and the autocollimator are represented by 
vectors HE and HA, which operate on the state vector, X, and 
produce the scalar azimuth (or elevation) encoder angle and 
autocollimator angle error. 

The software estimator computes the antenna state varia- 
bles for subsequent processing and feedback to the hardware 
control input. The estimator is essentially a dynamic simula- 
tion of the physical antenna and has the same input and dif- 
ference equation as the hardware. Under ideal conditions, the 
estimator output state vector, E, is identical to the antenna 
state vector, X. Errors in the estimated state vector, E, arise 
from modeling errors and from uncompensated disturbances. 
These errors are corrected by a comparison of the estimated 
with the true values of the encoder angle, and feedback of the 
estimator error, Y E ,  with a feedback gain factor, L. 

The feedback of the estimator error introduces a feedback 
loop around the estimator with a dynamic response governed 
by the amount of correction (gain) in the loop. By proper 
selection of the estimator correction coefficients, L, the speed 

of correction of erroneous estimates (and also the speed of 
response to transient invalid encoder data) can be adjusted. 
The coefficients are therefore designed to reach a compromise 
between rapid estimator error corrections and encoder data 
noise filtering. 

A logical test on the size of the estimator error provides a 
powerful method of detecting gross errors in encoder reading. 
The omission of the estimator correction when such errors are 
detected is equivalent to substituting the estimated value for 
the real encoder value and thus provides an optimal filter of 
gross errors. The limits on such a test must be sufficiently wide 
to permit recovery after an interval of rejecting erroneous data. 
Estimator errors due to modeling and disturbances will tend to 
accumulate during periods of invalid data and could prevent 
the acceptance of valid data if the limits are too restrictive. A 
dynamic limit test, with time and rate dependent limits calcu- 
lated to accommodate cumulative error, has been considered 
but not yet implemented. 

The servo feedback loop is closed by multiplying the state 
estimate, E, by a feedback gain, K.  Because the estimate, E, is 
approximately equal to the hardware output, X, the result is 
an effective feedback loop around the physical hardware. The 
dynamic properties of the closed servo loop are hence controlled 
by the value of K. The input to the software rate/acceleration 
limiter is 

where R is the input command, N is the input gain constant, 
and K*E is the scalar product which when expanded yields 

U = N . R - K , * E , - K 2 * E 2 - K 3 * E 3 - . . .  - K , * E ,  ( 2 )  I 
I 

I 
The input gain, N ,  controls the overall gain of the servo 

and is assigned different values according to the mode of 
operation. 

i The individual elements of gain vector K correspond to 
integral error, position, rate, acceleration, and other gains, and 
thus determine the closed loop stiffness and dynamic response 
of the servo. The K values are assigned to achieve the desired 
linear system performance. The method of computation of the 
K values is described in detail in Section V. 

111. Modes of Operation 
A. Computer Small Error Mode 

In the Computer Small Error Mode the servo is configured 
as described above in Section I1 to provide linear type I1 posi- 
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tion servo performance. This mode is employed when position 
control utilizing feedback from the axis encoders is required. 
The rate command is computed according to Eq. (2) and the 
input gain, N ,  is set equal to K ,  to provide unity position gain. 
Automatic transfer to the “Large Error” mode occurs any 
time conditions which would result in prolonged control satu- 
ration occur. A simple test initiates the transfer any time the 
calculated control input, U, exceeds 1.5 times the software 
rate limit. 

6. Precision Mode 

In the Precision Mode, the Az/El servo tracks the position 
of the Master Equatorial (ME), as contrasted to the Computer 
Small Error Mode where positioning to a specific encoder 
angle is required. The angular difference between the antenna 
and the ME is detected by a two-axis optical autocollimator 
mounted on the antenna. A single axis of the autocollimator 
is depicted in Fig. 1 as a hardware block with inputs from both 
the (Az/El) hardware and the Master Equatorial. The autocol- 
limator output is filtered by a 2-pole low pass filter in the 
hardware. In software, the azimuth error signal is multiplied 
by the approximate secant of the.elevation angle to correct for 
the elevation-dependent geometry of the autocollimator 
reflected light path. 

Precision Mode position control is accomplished through an 
alternate branch in the software which evaluates control and 
estimator equations modified to use autocollimator derived 
position error in place of the position command, R ,  and the 
estimated encoder angle E , .  The modified estimator equations 
compute integral error based on the filtered autocollimator 
error, as contrasted to the encoder vs command angle error 
which is used in the computer mode. In the Precision Mode 
the input to the software rate/acceleration limiter becomes 

The modified control and estimator equations provide 
type I1 control using the autocollimator error for position and 
integral control with damping provided by the estimator. A 
distinct advantage of this configuration over true error-only 
control is the continuity of the estimator equations between 
the computer and precision modes. Since the integral error 
estimate, E , ,  changes relatively slowly, there is no abrupt 
change in the estimator output resulting from mode to mode 
transitions. Mode transfer settling times are thus minimized. 

The software employs a four-pole minimum Integral Time 
Absolute Error (ITAE) low pass digital filter to restrict the 
error signal bandwidth and eliminate signal components re- 
sulting from deflections of the alidade structure. The filter 
bandwidth of 2.86 Hz was adjusted empirically on the 64-m 

antenna to provide the best damping of the alidade structure 
and to minimize the effects of autocollimator noise. 

C. Large Error Mode 

To prevent saturation of the type I1 servo loop, a third 
mode of operation is provided with software controlled mode 
selection. A Large Error Mode of operation is provided to 
accommodate intertarget slew motions and any other tran- 
sient conditions which would saturate the type I1 servo and 
cause large excursions of position error. 

In the Large Error Mode the software configuration is 
altered slightly from the computer mode configuration to pro- 
vide slew rate control with smooth rate transitions. The esti- 
mator functions the same as in the Small Error Mode except 
that all of the estimator elements are not utilized in the con- 
trol. The control gain, K, is chosen to produce a slow response 
rate servo with the bandwidth selected to limit the peak 
acceleration in response to a maximum rate step input. This 
type of control was chosen to minimize acceleration tran- 
sients which would excite oscillations of the antenna structure. 
In this mode the first two elements of K, which correspond to 
integral error and position feedback gain, are set to zero. The 
remaining elements are selected to achieve the desired closed 
loop servo bandwidth. In the Large Error Mode, the command 
input, R, is a rate signal value computed to reposition the 
antenna to the desired angle in minimum time. The input gain, 
N ,  is set equal to a function of K 3 ,  K , ,  K , ,  K ,  to provide 
unity rate servo gain. 

The software transfers from Large Error to Computer Small 
Error control when both the rate error and position error are 
sufficiently small to permit unsaturated type I1 servo perfor- 
mance. ,The limits for transfer are 0.05 degree/s rate error 
and 0.03 degree position error. Upon initial entry into Small 
Error control, the integral angular position error estimate, E ,  , 
is initialized to a value proportional to the estimated rate. This 
helps to minimize the error settling time. The mode control 
logic permits entry into Precision Mode only from the Com- 
puter Small Error Mode. 

IV. Control Algorithm Sequencing 
and Timing 

The computations of the discrete system matrices and of 
the feedback gains are based on a specific (50 ms) sample 
interval and negligible time delay between each encoder input 
and the corresponding rate command output. These conditions 
are satisfied by the use of timed interrupt driven software with 
lower priority interrupts masked during execution of time 
critical control computations. Time skew errors are minimized 
by assigning highest priority to a 100 pps interrupt which ini- 
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tiates encoder read and control computation at regular 50 ms 
intervals. Computing time effects are minimized by consecu- 
tive sequencing of the Azimuth and Elevation axis functions 
with the Elevation read and compute operations beginning 
20 ms behind those for Azimuth: This 20 ms offset allows 
sufficient time for completion of the Azimuth computations. 

The estimator is initialized prior to antenna brake release 
by equating the angular position estimate to the encoder read- 
ing and by setting all other state estimates to zero. On the 
transition from the Large Error to Small Error mode the inte- 
gral position error estimate is initialized to a value proportional 
to the estimated rate. The estimator is not reinitialized on 
transitions to or from the Precision Mode. 

~ 

V. Computation of the Control 
Algorithm Coefficients 

A. Linear System Matrices F and G 

The simplest linear dynamic model of the 70-m Az/EI 
antenna assumes a rigid body structure with the moment of 
inertia dominated by that of the inertia wheels attached to the 
motor shafts. The compressibility of the hydraulic oil and its 
piping combined with the inertia result in a complex conju- 
gate pole pair. Two real, open-loop poles corresponding to the 
rate loop compensation networks are also modeled. With the 
two integrations operating on the angular rate and position to 
produce position and integral error, the order of the dynamic 
system for control becomes six. Because estimator feedback is 
based on encoder angle, the integral error is an unobservable 
state and is excluded from the estimator design process. It is 
introduced later in the control gain design process. 

The simplified structure model described above was used in 
the design of the MK IV 64-m antenna servos. However, 
because of the significant dynamics changes resulting from the 
structure additions for the 70-m antenna, a more comprehen- 
sive structure model was needed. The new model [ l ]  includes 
gear reducer stiffness, three tipping structure modes, and two 
alidade modes in Elevation. The resulting closed rate loop 
model is 10th order for Azimuth and 14th order for Elevation. 
The low frequency closed rate loop poles of these models dif- 
fer considerably from those computed from the simplified 
rigid body structure model even though the rigid body inertia 
includes the static inertia of the structure. This difference 
results from the finite compliance of the gear reducers and of 
the structure. The models for both the 70-m and 64-m struc- 
tures indicate the Elevation axis compliance is dominated by 
the alidade. 

Because of the uncertain degradation of robustness asso- 
ciated with errors in modeling the structure, a decision was 

made to reduce the new model to the sixth order in the form 
of the simplified model described earlier. The underlying 
assumption, that system robustness resulting from the use of 
a rigid body based model is superior to that from a higher 
degree structure model, has not been investigated. The reduc- 
tion was accomplished by deleting the higher frequency pole- 
zero pairs associated with the structure modes. The remaining 
hydraulic motor and compensation network poles and zeros 
were then combined with the rate-to-position-to-integral- 
error integrations to synthesize the sixth order model. 

The poles and zeros for .the Azimuth and Elevation closed 
rate loops are listed in Table 1, and their corresponding linear 
system matrices are in Table 2. In the linear system matrices 
the value of 20 in the first row results from normalization of 
the integral error with respect to the sampling time interval. 
This produces a value of unity in the discrete transition 
matrix and helps to reduce estimator computation time. Fur- 
ther simplifications are accomplished by replacing the negli- 
gibly small elements in the first row of the transition matrix 
and the first element of the input matrix with zeros. The 
resulting coordinate skew corrupts the integral estimate by 
less than 12.5 microdegree-seconds in the worst case. 

The input large error mode gain constants, N ,  are calculated 
from the linear system matrices for the condition of unity rate 
gain. The results for azimuth are expressed by 

(4) N = 1.0 + K ,  + 5.173 K ,  + 10.001 K, 

and for elevation 
I 
I 

(5) ~ 

N = 1.0 + K ,  + 9.041 K ,  t 17.479 K ,  

B. The Discrete Transition and Input 
Matrices 

The linear system matrices F and G are transformed from 
the continuous time domain to the discrete (sampled data) time 
domain to produce the discrete transition matrix, @, and the 
discrete input matrix, I'. A computer sampling time interval 
of 50 ms (20 samples/s) was selected, as it satisfies the cri- 
teria of (1) negligible pointing error resulting from sampling 
effects at maximum tracking rate and acceleration; (2) the rate 
exceeds 10 times the required closed position loop bandwidth; 
and (3) the rate being a convenient multiple of the DSN fre- 
quency and timing standard 100 pps signals. The third crite- 
rion derives from the necessity to synchronize the tracking 
position commands to the Deep Space Network clock. 

Using the conversions for sampling described by a zero 
order hold with no delay 
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@ = expm ( F  * 

where expm denotes the matrix exponential function. a 
I 

I The \k matrix is obtained from the relationship 

F * T * \ k  = @ - I  (8) 

1 where I is the identity matrix. 

I A Fortran program was developed to evaluate @, \k, and r 
from the continuous time system matrices, F and G ,  and sam- 
pling time, T,  using the scale and square method described by 
Moler and Van Loan [4] .  The numerical results for 4 and r 
are listed in Table 3. 

' 
~ 

~ 

The control gain vector, K, and the estimator gain L are cal- 
culated by the method of closed loop eigenvalue assignment. 
This method, also referred to as pole placement, combines the 
desired closed loop pole locations with the discrete system 
matrices @ and l' in the Ackerman [3] equations to produce 
the control feedback gain, K, or estimator gain, L. 

The specified pole locations were iterated to insure satis- 
factory robustness and insensitivity to computational roundoff 
and to angle encoder quantizing. Deadbeat response (minimum 
settling time) is impractical because it requires excessive con- 
trol effort to overcome small' disturbances. The following gen- 
eral criteria were employed in specifying closed loop pole 

i 
I 

i 
I locations: 
I 

(1) The two lowest frequency poles are specified to 
achieve the desired bandwidth and settling time. For 

poles are complex conjugates with equaI real and 
imaginary parts. Assigning more than two dominant 
poles using the ITAE criteria, the Butterworth criteria, 
or (presumably) a similar criterion tends to increase the 
transient overshoot of the closed loop system and is 
avoided. The bandwidth of the estimator is always 
at least three times that of the overall system and 
narrow enough to provide a level of noise filtering. 

( 2 )  Other low frequency poles may be specified to cancel 
open loop zeros in order to produce a flat closed loop 
low frequency response. 

(3) High frequency poles are specified near their corre- 
sponding open loop locations to minimize the value of 
the resulting K or L. Estimator poles should be dis- 

I optimal error settling time (ITAE criteria) [ 2 ] ,  these 

placed slightly from the control poles to enhance 
robustness. 

(4) The resulting values of K or L are reviewed for suit- 
ably large values of elements corresponding to integral 
error, position, and rate, and for small values of the 
remaining elements, and the pole specifications are 
adjusted accordingly. The control input, U, and the 
subsequent encoder position change resulting from 
single least significant bit changes of the encoder out- 
put are evaluated from the K - L  and F - K * L  scalar 
products, respectively. In general, the estimate accu- 
racy of those states not closely coupled to the output 
state tends to diminish with remoteness of coupling. 
Therefore, noise and wasted control effort are reduced 
as less control authority is assigned to those states. 

Tables 4 through 6 list the values of the closed loop S plane 
poles used in the 70-m controller design and the resulting con- 
trol gain, K, and estimator feedback gain, L. The estinator 
gain is computed from the 5th-order discrete system matrices 
to avoid the unobservable integral error. Dimensional con- 
sistency with CP is obtained by expanding L to the sixth order 
with the addition of a zero value first element. Thus Table 5 
lists six L coefficients but only 5 estimator poles. 

VI. Summary 
The control algorithm along with the parameter values 

described above were incorporated in the system Software and 
tested successfully in the 70-m antenna at DSS 63 in Spain. 

VII. Areas for Further Investigation 
The degree of system performance improvement to be 

gained from the use of higher-order structure models has not 
yet been investigated. As discussed in Section V.A, only the 
zero order approximation of the structure was utilized in the 
present work because of robustness concerns. Comparison of 
the models of Table 1 with those of Table 6 and Figs. 5 and 6 
of [ I ]  shows that significant dynamics are neglected in the 
sixth-order model. The potential improvement of both esti- 
mator accuracy and structure damping can be expected to 
peak at some level of model complexity. Beyond this peak, 
estimator noise and system robustness are expected to de- 
grade due to modeling errors and unmodeled nonlinearities. 
Further work can utilize current known values of the non- 
linearities, structure dynamics test data, and estimates of 
modeling errors. 
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Table 1. Poles and zeros of the closed rate loop model, 
70-m antenna 

Axis Poles Zeros 

Azimuth 0.00 i j 0.00 
-1.45 i j 0.0 -2.2 i j 0.00 
-60.80 i j 0.00 -81.0 f j 0.00 

-7.81 i j 13.01 

Elevation 0.00 f j 0.00 
-1.45 i j 0.00 -2.2 i j 0.00 

-37.70 fj 0.00 -8 1 .O i j 0.00 
-20.81 i j 16.44 

Table 2. Linear system matrices for 70-m rate loops 

Azimuth axis 

0 
0 

F =  [ 8 
0 
0 

G =  

608 

H =  [j 
Elevation axis 

0 

F =  [: 0 

0 
0 

G =  I!] 
65 9 

20 
0 
0 
0 
0 
0 

20 
0 
0 
0 
0 
0 

0 
1 
0 

-15.17 
0 
0 

0 
1 
0 

-26.52 
0 
0 

0 
0 

15.17 
-15.62 

0 
0 

0 
0 

26.52 
-41.62 

0 
0 

0 
0 
0 
1 

-1.45 
0 

0 
0 
0 
1 

-1.45 
0 

1 
0.75 

-60.8 

1 
0.75 

-37.7 
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Table 3. Discrete system matrices, 70-m antenna (sample interval,TS = 0.0500 s) 

Azimuth discrete transition matrix, UJ 

0.100000E+01 0.100000E+01 
0.000000E+00 0.100000E+01 
0.000000E+00 0.000000E+00 
0.000000E+00 0.000000E+00 
0.000000E+00 0.000000E+00 I 0.000000E+00 0.000000E+00 

Azimuth discrete input matrix, r 

Elevation discrete transition matrix, UJ 

0.100000E+01 O.l00000E+01 
0.000000E+00 O.l00000E+O 1 
0.000000E+00 0.000000E+00 
0.000000E+00 0.000000E+00 
0.000000E+00 0.000000E+00 

~0.000000E+00 0.000000E+00 

Elevation discrete input matrix, r 

0.23985 1E-01 
0.463185E-01 
0.784645E+00 

0.000000E+00 
0.000000E+00 

-.47 7875E+OO 

0.000000E+00 
0.1 221 45E-02 
0.828046E-0 1 
0.244640E+00 
0.250242E+00 
0.952165E+Ol 

0.225781E-01 
0.4 1 30 12E-0 1 
0.568074E+00 

0.000000E+00 
0.000000E+00 

-.417450E+OO 

0.000000E+00 
0.21 2 184E-02 
O.l38387E+OO 
0.21 3978E+OO 
0.35085lE+OO 
0.14826 1E+02 

0.000000E+00 0.000000E+00 0.000000E+00 
0.14 1 96 1 E-0 1 0.25 1086E-03 0.1 36192E-03 
0.477875E+00 0.13832OE-01 
0.292594E+00 0.30 1 792E-0 1 
0.000000E+00 0.930066E+00 
0.000000E+00 0.000000E+00 0.478353E-01 

I 

I 
I 

0.000000E+00 0.00000OE+00 

0.41 745OE+OO 
0.162868E-01 0.32 1490E-03 0.209996E-03 

0.158207E-01 0.861108E-02 
0.14875 9E-01 0.394712E-02 -.870649E-01 

0.000000E+00 0.930066E+OO 0.161014E-01 
0.000000E+00 0.000000E+00 0.15 1829E+00 
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Table 4. Estimator gain coefficients, L 

I Axis L ,  L 2  L 3  L 4  L5  L6  S plane poles 
i 

Azimuth 0.0000 0.7398 5.1375 -7.7241 3.2878 -.0252 -2.00 t j  0.00 -8.00 t j  0.00 -17.0 t j  17.0 -60.8 t j  0.00 

' Elevation 0.0000 0.5711 7.3192 -13.4937 5.1036 0.0001 -2.00 t j O . O O  -8.00 t j O . 0 0  -25.0 t j  25.0 -37.7 t jO .00  

Table 5. Azimuth control gain coefficients, K 

Mode K1 K 2  K 3  K 4  K 5  K6  S plane poles 
I 
I 
I Computer small error 0.0156 0.6863 -.2312 0.0141 0.0586 -.0318 -2.20 t j 0.00 -.50 - r j  0.50 -10.0 t j 0.00 -12.0 t j  12.0 

Computer small error, 0.0302 0.9863 -.2013 0.0397 0.0598 -.0307 -2.20 ti 0.00 -.70 f j 0.70 -10.0 t j  0.00 -12.0 t j  12.0 
alternate 

Precision 0.0071 0.3590 -.3287 -.1367 0.0448 -.0453 -2.20 + j O . O O  -.45 kjO.45 -5.0 tjO.00 -12.0 + j  12.0 

Large error 0.0000 0.0000 0.4955 -.5467 -.0389 -.1270 -0.00 0.00 -.OO t j 0.00 -2.2 t j 0.00 -2.0 t j 2.0 
-8.0 t j O . 0 0  

Table 6. Elevation control gain coefficients, K 

Mode K l  K 2  K 3  K4 K 5  K 6  S plane poles 

I 
Computer small error 0.0281 0.9153 0.2593 0.2987 0.0136 -.0368 -2.20 + j 0.00 -.70 + j 0.70 -8.00 + j 0.00 -18.0 + j  18.0 

Computer small error, 0.0564 1.3565 0.2791 0.3047 0.0153 -.0351 -2.20 k j  0.00 -1.00 + j 1.00 -8.00 + j  0.00 -18.0 t j  18.0 
alternate 

Computer small error, 0.0310 0.8229 0.2751 0.3508 0.0048 -.0454 -2.20 * j  0.00 -1.00 t j 1.00 -4.00 t j 0.00 -18.0 t j 18.0 
alternate 

Computer small error, 0.0145 0.6370 0.2469 0.2952 0.0125 -.0379 -2.20 + j 0.00 -.50 t j 0.50 -8.00 t j  0.00 -18.0 t j 18.0 
alternate 

Precision 0.0050 0.2612 0.2602 0.3707 -.0017 -.0519 -2.20 + j 0.00 -.45 -cj 0.45 -3.00 ti 0.00 -18.0 ti 18.0 

Large error 0.0000 0.0000 2.1903 1.1171 -.0869 -.1358 -0.00 t j  0.00 -.OO + j O . O O  -2.20 t jO.00 -2.0 tj 2.0 
-20.0 t jO .00  
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